Back To Projects
Predicting Running Injuries with Machine Learning Models
Elgin V. | Summer 2022 |

Is it possible to predict running injuries with only a dataset and machine learning models? This paper explores this question by using classification models, including the Logistic Regression model and the Random Forest Classifier model.


Is it possible to predict running injuries with only a dataset and machine learning models? This paper explores this question by using classification models, including the Logistic Regression model and the Random Forest Classifier model. In the dataset used, ten features were taken into account when predicting running injuries. With slight modifications, the Weighted Logistic Regression and over and down-sampling Random Forest Classifier models were used to mitigate the imbalance in the dataset. The results suggested that the best model was Weighted Logistic Regression and that the best score metric to take into account was the F beta score.

Explore More!

Published Paper
Elgin V.
Joseph Vincent
Aerospace Engineering PhD Candidate at Stanford

Related Projects

workspace_premium
Optimizing Prediction Accuracy Using Advanced Ensemble And Voting Classifier Methods

This project observes how various machine learning models, once tuned, can further be combined to create a complex model that uses NFL data from the past 18 years to predict the outcomes of matchups between any two competing teams.
Ashray P. | Summer 2022
Mentored by Christopher Mauck
Allez Go: AI Fencing Referee

Technology in fencing is generally an underdeveloped field and automated referees present potentially significant benefits to the sport. Automated referees will offer a more consistent call compared to a group of human referees with slightly different interpretations of the fencing rules.
Jason M. | Spring 2022
Mentored by Anna Orosz
Revolutionizing Football: Using Machine Learning to Predict Future Performances for Quarterbacks

It is important to have a reliable application that can aid users of betting and fantasy football in which players they should put bet on, or choose for their fantasy teams. My motivation behind this project was to create something that could further betting and fantasy football, and even increase traction.
Anya N. | Winter 2023
Mentored by Eric Bradford