Back To Projects
Predicting Running Injuries with Machine Learning Models

Is it possible to predict running injuries with only a dataset and machine learning models? This paper explores this question by using classification models, including the Logistic Regression model and the Random Forest Classifier model.


Is it possible to predict running injuries with only a dataset and machine learning models? This paper explores this question by using classification models, including the Logistic Regression model and the Random Forest Classifier model. In the dataset used, ten features were taken into account when predicting running injuries. With slight modifications, the Weighted Logistic Regression and over and down-sampling Random Forest Classifier models were used to mitigate the imbalance in the dataset. The results suggested that the best model was Weighted Logistic Regression and that the best score metric to take into account was the F beta score.

Explore More!

Published Paper
Elgin V.
Joseph Vincent
Aerospace Engineering PhD Candidate at Stanford

Related Projects

workspace_premium
AI-Based Image Classification Used to Accurately Distinguish Recyclable Material Versus Non-Recyclable Material

One cause of this improper disposal of materials is that it can be difficult to tell if a material is able to be recycled. In response, I created a machine learning model that can distinguish recyclable materials from trash through image classification.
Katarina A.
Mentored by Ayush Pandit
Comparison of Machine Learning Models to Best Predict Game Attendance in Major League Baseball

To forecast Major League Baseball game attendance, this study employs six different regression models commonly used for machine learning.
Seohyun P.
Mentored by Kasra Koushan
workspace_premium
Combating Climate Fake News Using NLP

As fake news becomes more prevalent across the US, important issues become harder to solve. One such issue is climate change, where climate misinformation has worsened viewer’s abilities to distinguish between fake information and real information. This project’s objective is to tackle climate misinformation using an artificial intelligence model.
Rayyan M.
Mentored by Philip Bell