Back To Projects
Stellar Classification based on Numerous Characteristics using Machine Learning

The task of stellar classification can be tedious and lengthy when done manually. One can expedite stellar classification by creating an artificial intelligence model to automate the process. The current stellar classification model serves to effectively categorize stars for research purposes regarding their distribution around the universe, so automating the development of this resource would allow professionals to allocate more time to explore the bounds of our current understanding of space and the universe. After finding and analyzing a dataset containing numerical and categorical features, a supervised learning approach was then used to train and test different models on their ability to classify the stars in the given test set. A Decision Tree Classifier, Random Forest Classifier, Ridge Classifier, and Support Vector Classifier were trained and tested using the data.


The task of stellar classification can be tedious and lengthy when done manually. One can expedite stellar classifi- cation by creating an artificial intelligence model to automate the process. As we as a species continue to explore the frontier of the observable universe, we should seek to automate time intensive problems like stellar classification. The current stellar classification model serves to effectively categorize stars for re- search purposes regarding their distribution around the universe, so automating the development of this resource would allow professionals to allocate more time to explore the bounds of our current understanding of space and the universe. After finding and analyzing a dataset containing numerical and categorical features, a supervised learning approach was then used to train and test different models on their ability to classify the stars in the given test set. A Decision Tree Classifier, Random Forest Classifier, Ridge Classifier, and Support Vector Classifier were trained and tested using the data. The most successful models were the Decision Tree Classifier and Random Forest Classifier, each with about a 94 percent prediction accuracy across different accuracy metrics on the test data. Despite some drawbacks in regards to the availability of usable data, four models were trained and two were proven to be consistently and successfully accurate. Any future attempts at developing models for stellar classification should concentrate more on gathering data as to have a more thoroughly trained set of models.

Explore More!

Published Paper
Roberto T.
Sophia Barton
Computer Science MS from Stanford

Related Projects

workspace_premium
Evaluating Machine Learning Models on Predicting Change in Enzyme Thermostability

Our research problem is finding the best machine learning model to predict the change in enzyme thermostability after a single point mutation in the amino acid sequence.
Avnith V.
Mentored by Jacklyn Luu
Predictive Dynamics of Solar Cycles: An Analysis of Sunspot Patterns, Granger Causal Relationships, and Terrestrial and Space Weather Phenomena

This paper attempts to understand the complex nature of solar cycles, primarily through the lens of sunspot data analysis, to predict future solar activity and explore its causality with Earth and Space phenomena such as global temperatures and CO2 Emissions.
Mariah D.
Mentored by
workspace_premium
Exploring Asteroid Orbits: Insights from Neural Network Modeling and Data-driven Analysis

In this study, orbital data from the NASA Jet Propulsion Lab was used in the classification of asteroid orbits through a machine-learning approach.
Aarav S.
Mentored by