Back To Projects
Stellar Classification based on Numerous Characteristics using Machine Learning
Roberto T. | Fall 2022 |

The task of stellar classification can be tedious and lengthy when done manually. One can expedite stellar classification by creating an artificial intelligence model to automate the process. The current stellar classification model serves to effectively categorize stars for research purposes regarding their distribution around the universe, so automating the development of this resource would allow professionals to allocate more time to explore the bounds of our current understanding of space and the universe. After finding and analyzing a dataset containing numerical and categorical features, a supervised learning approach was then used to train and test different models on their ability to classify the stars in the given test set. A Decision Tree Classifier, Random Forest Classifier, Ridge Classifier, and Support Vector Classifier were trained and tested using the data.


The task of stellar classification can be tedious and lengthy when done manually. One can expedite stellar classifi- cation by creating an artificial intelligence model to automate the process. As we as a species continue to explore the frontier of the observable universe, we should seek to automate time intensive problems like stellar classification. The current stellar classification model serves to effectively categorize stars for re- search purposes regarding their distribution around the universe, so automating the development of this resource would allow professionals to allocate more time to explore the bounds of our current understanding of space and the universe. After finding and analyzing a dataset containing numerical and categorical features, a supervised learning approach was then used to train and test different models on their ability to classify the stars in the given test set. A Decision Tree Classifier, Random Forest Classifier, Ridge Classifier, and Support Vector Classifier were trained and tested using the data. The most successful models were the Decision Tree Classifier and Random Forest Classifier, each with about a 94 percent prediction accuracy across different accuracy metrics on the test data. Despite some drawbacks in regards to the availability of usable data, four models were trained and two were proven to be consistently and successfully accurate. Any future attempts at developing models for stellar classification should concentrate more on gathering data as to have a more thoroughly trained set of models.

Explore More!

Published Paper
Roberto T.
Sophia Barton
Computer Science MS from Stanford

Related Projects

workspace_premium
Predicting Climate Change Using an Autoregressive Long Short-Term Memory Model

This study aims to create a baseline machine learning model that utilizes an Autoregressive Recurrent Neural network with a Long Short term memory implementation for the purpose of predicting climate.
Seokhyun C. | Winter 2022
Mentored by Victoria Lloyd
workspace_premium
Exploring Asteroid Orbits: Insights from Neural Network Modeling and Data-driven Analysis

In this study, orbital data from the NASA Jet Propulsion Lab was used in the classification of asteroid orbits through a machine-learning approach.
Aarav S. | Summer 2023
Mentored by
Vibration Analysis

This paper covers differences in accuracies of an artificial intelligence model that classifies different sets of sensor outputs (in this case, machinery shaft vibrations) collected by sensors into varying levels of weight on the shaft.
Akshay N. | Fall 2022
Mentored by