Back To Projects
A Machine Learning Approach to Understanding the Determining Factors of the Gender Wage Gap
Sophia G. |
workspace_premium 2nd Place at San Diego BROADCOM Science Fair (Senior Division)

By studying the affect of different attributes on the gender wage gap, we can better understand both the scale of this issue and its possible solutions. So, we explore the question, how does a worker’s marital status, along with other variables, impact the gap in hourly wage between male and female workers? We seek to create a model able to predict the gender wage gap given a set of variables—age, years of education, race, state, and marital status.


Gender inequality is a complex subject consisting of a variety of issues and nuances. In this project, we choose to study gender income inequality—a prevalent issue in current society. Among the many factors that play a role in the gender wage gap, we focus on the affects of marital status, race, geographical location (by state), age, and years of education. By using these variables to create a model able to predict the hourly wage gap between a woman and their equivalent male counterpart, we can analyze the impact of each variable to better understand the role they play in the income gap. Utilizing income data from the Current Population Survey, we train and test five models—a Linear Regression, Decision Tree Regressor, Random Forest Regressor, KNeighbors Regressor, and MLP Regressor. Our Linear Regression model found that there is a correlation between being a never married worker and a smaller gender wage gap, as well as being a married worker with an absent spouse and a greater gender wage gap. In general, though, our models found little correlation between the variables provided and the predicted hourly age gap.

Explore More!

Source Code
Sophia G.

Related Projects

workspace_premium
Diagnosing Hypertrophic Cardiomyopathy Using Machine Learning Models on CMRs and EKGs of the Heart

In this project, we presented a pair of models, one CNN model and one Long Short Term Memory (LSTM) model, that are capable of classifying cardiac magnetic resonance (CMR) and heart electrocardiogram (EKG) scans, respectively.
Surya K.
Mentored by Sriram Hathwar
What Factors Correlate with the Relationship Between Gender and Race and Pursuing STEM?

In this paper, I sought to answer the question, “How do races and genders differ in the way they pursue STEM, and what factors correlate with these differences?” Identifying which factors cause this lack of representation is the most important step in fixing the diversity problem.
Saket R.
Mentored by Bradley Yam
Leveraging AI to Analyze Factors Relating to Social Anxiety

Our research aims to leverage ML to understand what factors play the most critical role in the presence of social anxiety disorder in a person.
Neha K.
Mentored by Udgam Goyal