Back To Projects
A Machine Learning Approach to Understanding the Determining Factors of the Gender Wage Gap
Sophia G. | Summer 2022 |
workspace_premium 2nd Place at San Diego BROADCOM Science Fair (Senior Division)

By studying the affect of different attributes on the gender wage gap, we can better understand both the scale of this issue and its possible solutions. So, we explore the question, how does a worker’s marital status, along with other variables, impact the gap in hourly wage between male and female workers? We seek to create a model able to predict the gender wage gap given a set of variables—age, years of education, race, state, and marital status.


Gender inequality is a complex subject consisting of a variety of issues and nuances. In this project, we choose to study gender income inequality—a prevalent issue in current society. Among the many factors that play a role in the gender wage gap, we focus on the affects of marital status, race, geographical location (by state), age, and years of education. By using these variables to create a model able to predict the hourly wage gap between a woman and their equivalent male counterpart, we can analyze the impact of each variable to better understand the role they play in the income gap. Utilizing income data from the Current Population Survey, we train and test five models—a Linear Regression, Decision Tree Regressor, Random Forest Regressor, KNeighbors Regressor, and MLP Regressor. Our Linear Regression model found that there is a correlation between being a never married worker and a smaller gender wage gap, as well as being a married worker with an absent spouse and a greater gender wage gap. In general, though, our models found little correlation between the variables provided and the predicted hourly age gap.

Explore More!

Source Code
Sophia G.

Related Projects

workspace_premium
Diagnosing Brain Tumors from MRI Images Using Deep Transfer Learning

This study aims to utilize a transfer learning method in which the prior knowledge of a pretrained model is used to aid in a new classification problem.
Armita K. | Fall 2022
Mentored by
workspace_premium
Applications of AI in Microfinance

I hope to explore how to use AI in the field of microfinance to help reduce income inequality. Microfinance has greatly helped decrease rural poverty rates in Bangladesh. The leader of this effort won the Nobel Peace Prize for his work. These micro-loans give opportunity to those who are not otherwise able to obtain financing for their entrepreneurial ideas. This can be applied in the U.S. too, in places where the population cannot otherwise obtain loans to start small businesses and climb their way out of poverty. It can be very difficult to start from rock bottom in the US, especially for those without access to resources. If people could obtain small loans and start small businesses, they could work their way out of poverty. The microloans have to be viable for banks as well. The problem I’d like to explore is whether AI/ML can be used to determine how to deploy microloans efficiently to address income inequality in the U.S.
Alex M. | Summer 2022
Mentored by Odysseas Drosis
workspace_premium
Using Machine Learning to Detect Alzheimer’s Disease in MRI Scans

We aimed to answer the question about if Magnetic Resonance Imaging (MRI) scans, which are often used in the diagnosing of other neurological disorders, can be used to diagnose AD in patients.
Sam L. | Summer 2023
Mentored by Ivan Villa-Renteria