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SUMMARY 

Hypertrophic cardiomyopathy (HCM) is a common inherited heart disorder manifesting 

as hypertrophy of the left ventricle of the heart.  However, it often goes undiagnosed, which we 

must seek to avoid since the possibility of sudden cardiac death (SCD) as a result of HCM is not 

insignificant.  In this paper, we present a pair of models, one CNN model and one Long Short 

Term Memory (LSTM) model, that are capable of classifying cardiac magnetic resonance 

(CMR) and heart electrocardiogram (EKG) scans, respectively. Each of these models classifies 

their respective scans into HCM and non-HCM categories.  The CNN model has an accuracy of 

94.71%, a precision of 96.97%, a recall of 91.21%, and an F1 score of 94.85%.  The LSTM 

model has an accuracy of 90.51%, a precision of 60.31%, a recall of 60.08%, and an F1 score 

of 60.19%.  These results show that these machine learning models are viable tools that could 

assist physicians in the diagnosis of HCM patients. 

 

INTRODUCTION 

HCM affects 1 in 2000-2500 people in the American population, through which it could 

be inferred that around 750,000 Americans have this disease.  However, other research 

suggests that the proportion stated above may only be 10-20% of all cases since the condition 

remains largely undiagnosed (1).  Early diagnosis is a priority for patients because HCM can 

result in SCD, which is believed to be one of the leading causes of death in younger people (2). 

The majority of cases of HCM-related SCD occur in undiagnosed individuals, emphasizing the 

importance of early diagnosis.  An Ontario study yielded a sample proportion of 0.31 definite 

HCM-related SCDs per person-years.  Currently, diagnostic processes consist of genetic 
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testing, personal history (symptoms), physical examination, and family history combined with 

EKG, echocardiography, and CMR scans (1). 

Artificial intelligence (AI) is the training of models to mimic intelligent behavior without 

significant human intervention.  Through AI, drastic advancements in healthcare have been 

made, including early diagnosis of life-threatening diseases like cancer and healthcare data 

management (3).  The FDA has also created its own separate procedure for handling AI-related 

medical technologies in order to better handle its specific challenges with training a model and 

ensuring its safety (4). 

The purpose of this study is to develop and validate a pair of models to diagnose HCM 

based on either CMR images or EKG data to examine their accuracies, precisions, recalls, and 

F1 scores.  The major results of this study show that the Keras CNN model performed with the 

highest accuracy, precision, recall, and F1 scores for the CMR scans and that the Keras-

architecture LSTM model performed the best for the EKG data. 

 

RESULTS 

CMR Results 

During testing, this study utilized several pre-made scikit-learn library models to classify the 

CMR scans because of their versatility and simplicity in data classification.  Each model was 

trained on a randomized training set and was tested on a separate testing set.  We assessed 

each of these models on the metrics of accuracy, precision, recall, and F1 score. 

We also tested a Keras-architecture convolutional neural network and attempted to find the best 

layer combination, using techniques like Dropout and MaxPooling2D layers. 

During testing, we found that this CNN Keras architecture model performed the best in three of 

the four metrics assessed (accuracy = 94.71%, precision = 96.97%, recall = 91.21%, F1 score = 

94.85%, Table 1), with only the Random Forest scikit-learn model outperforming it in one metric 

with a precision of 98.79%. 

 

EKG Results 

At first, we used the same initial scikit-learn models as the CMR files on the EKG data.  

However, we found that these models were too simple to capture the differences between HCM 

positive and negative scans. Specifically, we found a low recall, indicating a high amount of 

false negatives. We switched to the Keras library and attempted to construct more complex 

models to better capture the positive cases.   
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Using Keras-architecture CNN and LSTM models, we found that the LSTM model performed the 

best (Table 2), because it was the only model with sufficient precision and recall.  The others 

failed to have precision and recall reach over 60%. 

 

DISCUSSION 

The Keras CNN model classified CMR scans into HCM and non-HCM with a high 

accuracy, precision, recall, and F1 score.  It outperformed all of the scikit-learn models in all 

categories except the Random Forest model’s precision.  This indicates that it could likely be 

used as a potential tool to assist physicians in diagnosing HCM, which could lead to earlier 

diagnosis and disease tracking. 

The LSTM classified EKG scans into HCM and non-HCM with a high accuracy and 

precision, but lower recall and F1 score.  This indicates that the model has a tendency to under-

diagnose, and thus must be improved on predictions of positive values before it could be used 

clinically as an assistive tool. 

Using the same scikit-learn models as the CMR scans for the EKG models did not yield 

similar results.  The models all overgeneralized and ended up drastically underdiagnosing HCM, 

with recalls all below 40%.  We switched to using Keras architecture LSTM and CNN models to 

try to improve recall, which was the lowest value because of the large amount of false negative 

predictions.  The LSTM resulted in the best metrics. 

The novelty of this study is the pairing of these two models. In a typical diagnostic 

process, a doctor uses several scans and risk factors to determine whether or not a patient has 

a risk of HCM. This pair of models utilize multiple modalities in order to better assist a doctor in 

diagnosis. 

These models are limited by the fact that they were only trained on one dataset each.  

The Hypertrophic Cardiomyopathy Dataset was collected in Iran, and thus the CNN might be 

influenced in decisions because of commonalities between people of the same region.  This 

could result in potential incorrect classifications on scans from outside Iran.  In addition, the 

PTB-XL dataset LSTM model is subject to the same possible issues on scans of people from 

outside of Germany. 

In addition, the CMR CNN has an additional potential handicap.  If it receives CMR 

images from angles it has not trained on, it might also misclassify the image.  In the future, this 

research could be expanded on by increasing the size of the dataset, diversifying the group of 

patients scanned, utilizing scans from different angles, and using higher frequency EKG to 

capture smaller patterns. 
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The CMR CNN holds somewhat more promise than the EKG model because of its 

generally higher performance in all assessed performance metrics.   

 

MATERIALS AND METHODS 

This study utilized Kaggle, an online data science community with access to a variety of 

machine learning datasets, to collect both the CMR and EKG data for these models.  The CMR 

data was from the Hypertrophic Cardiomyopathy Dataset, collected at Omid Hospital in Tehran, 

Iran (Figure 1).  It consisted of two directories, Sick and Healthy, which held several 

subdirectories with the CMR .jpg files.  In total, there were 37241 healthy and 21846 HCM 

scans.  The PTB-XL ECG dataset was collected at the Physikalisch-Technische Bundesanstalt 

(PTB), a research institute in Germany. The dataset consists of directories of .dat and .hea files 

holding 10-second-long EKG records of 18885 patients sampled at a frequency of 100 Hz, and 

additionally, versions sampled at 500 Hz (Figure 2).  Both of these datasets were imported into 

a Python-language notebook in Google Colaboratory, or Google Colab, for short. 

Google Colab and Python Libraries: 

Google Colab is a free cloud-based interactive programming notebook software similar 

to a Jupyter Notebook. It allows for the separation of code cells, allowing for running separate 

sections of code out of order, when normally, Python code would just run in order. This also 

gives the option to correct typos or small errors without rerunning the whole code at once.  It 

also has several useful Python libraries preinstalled for machine learning, such as os, pandas, 

NumPy, matplotlib, scikit-learn, and joblib.  In addition, it allows for the installation of other 

libraries needed for certain data and models, like cv2, wfdb, keras, and Streamlit.  It also comes 

with limited free access to GPU and TPU hardware accelerators. 

The os library allows for interaction with the computer’s operating system.  This allows 

the user to change directories and manage folders and files. It allows the user to learn more 

about the software environment as well (7).  The main application of the pandas library includes 

useful structures like DataFrames to organize table data, which is useful when handling any 

data stored in CSV files.  Pandas DataFrames can also be directly trained on by models (8).   

We also utilized NumPy, a fundamental Python library used for its unique array data type 

and mathematical functions for processing said arrays (9), and matplotlib, a data visualization 

library that can create data plots.  The latter is useful for generating graphics of data and 

analyzing model performance for hyperparameter tuning (10). 

Cv2, or OpenCV, is a computer vision (CV) library used to filter, segment, edit, and 

recolor images that are being trained on for computer vision models.  This allows the user to 
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eliminate any distractions for the model so that it only focuses on the specific images that the 

user wishes it to.  It can also resize images so that they all fit into the proper dimensions for a 

model to analyze them properly (11).   

WFDB is a library used to interpret .dat and .hea files that hold the EKG information.  By 

applying certain functions, it can be used to view the actual EKG leads and waves, which helps 

for a better understanding of the data (12).   

Keras is a Tensorflow-based library used for creating machine learning models.  It is 

capable of creating custom CNNs, recurrent neural networks (RNNs), LSTMs, U-Net models, 

and more.  It has various features and hyperparameters that can be edited to improve model 

performances based on the specific aspects of certain datasets (13). 

Joblib is a library used for model storage.  Using it, one can store models and all of their 

assigned weights (14). 

 

CMR Dataset Analysis 

Upon examining each of the images with matplotlib and the in-built .shape function, we 

realized that the images were a variety of pixel sizes.  To ensure that the model could work 

efficiently, we grouped all images of the same size together in Python lists.  Lists that had 

similar numbers of images with the same size for both Diseased and Healthy patients were the 

only images chosen for training.  One image size was chosen, and all of the images in the 

selected lists were converted to the same size. 

Each of the lists was converted to a NumPy array, and had a corresponding NumPy 

array column of labels created (0: healthy, 1: diseased).  All image data arrays were added 

together using the np.vstack function to make an X (training images) array, and all label arrays 

were added together to make a y (label) array.  Once the arrays were complete, the 

train_test_split function from scikit-learn was used to split the data into a randomized 80%-20% 

split of training and testing data in the variables X_train, X_test, y_train, and y_test. 

Each individual testing model was fit to the X_train and y_train variables, which contained all 

training data.  Each model then predicted the labels of X_test based on their training.  Each 

model was assessed on the accuracy, precision, recall, and F1 score (Table 1). Precision is the 

percentage of scans correctly classified out of all scans classified as HCM positive by the 

models.  Recall is the percentage of scans correctly classified out of all actual HCM positive 

scans.  F1 score is a combination of both. 

The exact architecture of the model (Figure 3) was a two iteration for loop that contained 

three Conv2D layers with 64, 32, and 16 units, all with ReLu activations and kernel sizes of 
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(3,3), followed by a MaxPooling2D layer with a pool_size of (2,2) within the loop.  After the loop 

were three Dense layers with 64, 16, and 4 units each, with ReLu activations and l1(0.0001) 

kernel regularizers.  Each Dense layer had a layer of Dropout following it, with values of 0.2, 

0.2, and 0.1 respectively.  Following the last Dropout layer was a final Dense layer with 1 unit, a 

kernel regularizer of l1(0.0001), and a sigmoid activation function to produce a value between 0 

and 1.  The CNN was compiled with binary_crossentropy as the loss, adam as the optimizer, 

and accuracy as the metrics.  It was fitted to X_train, y_train, a batch size of 200, set shuffle = 

true, and was validated using X_test and y_test.  It was also tested on the four previously 

mentioned metrics (Table 1), with a full confusion matrix in Table 3. 

 

EKG Dataset Analysis 

The creators of the PTB-XL dataset created a recommended data split for training and 

testing data.  It divided the data into a 90% training and 10% testing split.  This recommended 

split was used for the model.  In addition, the label set was modified.  Originally, each EKG had 

a list of specific diagnoses as the label.  This was simplified to an ‘HYP’ label for the EKGs with 

an HCM diagnosis and non-HYP for the EKGs without. 

Originally, the same scikit-learn models that were used for the CMR scans were used, 

but with poor results.  Each model tended to under-diagnose HCM, resulting in an excess of 

false negatives and, consequently, lower accuracy and recall.  In addition, these models also 

had precision below 50%.  Because of the lack of results, we switched to Keras CNN, RNN, and 

LSTM models.  We found that LSTMs could generally classify the best out of the three, so we 

prioritized its improvement. 

The full structure of the LSTM model (Figure 4) was five Bidirectional LSTM layers with 

64, 32, 16, 32, and 64 units each, with a layer of Dropout in between each.  Each Dropout layer 

had 0.2 except for the last, with 0.15.  Following the LSTM layers was a GlobalMaxPooling1D 

layer, followed by three Dense layers with 32, 16, and 4 units each.  Each Dense layer also had 

ReLu activations and a l2 kernel regularizer value of 0.0001.  We then put a Batch 

Normalization layer and a final 1 unit Dense layer with sigmoid activation.  We then rounded 

each prediction to either 0 or 1 to assess accuracy. 

Each of the scikit-learn and Keras models were assessed on the accuracy, precision, 

recall, and F1 score (Table 2), with a full confusion matrix of the top performing model in Table 

4. 
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Figures and Figure Captions 

 

Figure 1. CMR scan from the Omid Hospital Hypertrophic Cardiomyopathy Dataset.  .jpg 

files visualized with the cv2 and matplotlib libraries. 



 

9 

 

Figure 

2. Example EKG scan obtained through WFDB library.  12 leads are depicted as waves, 

each with 1000 samples taken within a 10 second interval, or at a frequency of 100 Hz. 
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Figure 3. Structure of CMR CNN Model.  Shows layer type and input and output sizes of each 

layer, with three Conv2D layers, followed by a MaxPooling2D layer, followed by three more 

Conv2D layers, another MaxPooling layer, a Flatten layer, and then four Dense layers 

separated by Dropout layers. 
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Figure 4. EKG LSTM model structure. Shows structure and input and output sizes for each 
layer.  Consists of 5 Bidirectional LSTM layers with Dropout in between each, followed by a 
GlobalMaxPooling1D layer, followed by three Dense layers, a Batch Normalization layer, and a 
final Dense layer with one unit. 
 

 

Tables with Captions 

Model Accuracy Precision Recall F1 Score 

RF 94.71% 98.79% 91.21% 94.85% 

Logreg 88.13% 89.27% 87.02% 88.13% 

Ridgeclass 88.56% 90.66% 86.75% 88.66% 

Decision Tree 90.09% 91.35% 88.89% 90.10% 

SVM 91.03% 96.54% 86.78% 91.40% 

CNN 97.01% 96.97% 97.13% 97.05% 

 

Table 1. CMR accuracy metrics for different scikit-learn models. The listed models are 

random forest (RF), logistic regression (Logreg), ridge classification (Ridgeclass), support vector 

model (SVM), and convolutional neural network (CNN). 

 

Model Accuracy Precision Recall F1 Score 

RF 87.97% 46.88% 5.70% 10.17% 

Logreg 86.70% 27.27% 6.84% 10.94% 

Ridgeclass 84.88% 23.48% 11.79% 15.70% 

Decision Tree 82.61% 27.61% 28.14% 27.87% 

LSTM 90.51% 60.31% 60.08% 60.19% 

Wavelet 
Transformed 
LSTM 

91.10% 74.10% 39.16% 51.24% 
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Model Accuracy Precision Recall F1 Score 

RF 87.97% 46.88% 5.70% 10.17% 

Logreg 86.70% 27.27% 6.84% 10.94% 

Ridgeclass 84.88% 23.48% 11.79% 15.70% 

Decision Tree 82.61% 27.61% 28.14% 27.87% 

LSTM 90.51% 60.31% 60.08% 60.19% 

CNN 90.24% 87.50% 21.29% 34.25% 

 

Table 2.  EKG accuracy metrics for different scikit-learn models. The listed models are 

random forest (RF), logistic regression (Logreg), ridge classification (Ridgeclass), decision tree, 

and long short term memory network (LSTM). 

 

TP = 576 FP = 18 

FN = 17 TN = 560 

 

Table 3. Confusion matrix for CMR CNN model.  TP = true positives, FP = false positives, FN 

= false negatives, and TN = true negatives. 

 

TP = 158 FP = 104 

FN = 105 TN = 1836 

 

Table 4. Confusion matrix for EKG LSTM model.  TP = true positives, FP = false positives, 

FN = false negatives, and TN = true negatives. 

 

Appendix (If applicable) 

https://github.com/suryakolluri6/HCM_diagnostic_models/tree/main 

https://github.com/suryakolluri6/HCM_diagnostic_models/tree/main

