
The Effect of the News on the Stock Market

Abstract
Understanding how the stock market works is an essential skill in life.

Investing properly can lead to security and stability in financial life, but it is hard
to find a way to do it consistently. This brought up the question of automating this
skill. This is what this paper is about. Using a CNN() and Hugging Face’s
Transformers() model, we created a sentiment analysis model that can provide
both the certainty of the sentiment and the sentiment itself. The higher the
certainty, the more likely it is that the stock will increase in the near future. The
CNN and Transformers models both yielded exceptional results, with the
Transformers model beating out the CNN model by a mere 1%. This means that
the Transformers model was more accurate in predicting the sentiment of
sentences than the CNN model was, but only by a little bit. The dataset used
consisted of three columns: title, stock, and date. The ‘date’ column will not be
used, but the title and stock columns will be used to train the model and display
graphs. The purpose of this machine is not to control a buyer’s account and only
make purchases that will be guaranteed successes in the short run; it is to
provide the buyer with exterior information unwittingly to the buyer so they can
make a more educated decision.

Intro:
I remember opening my investing account one day and looking at my

stocks, noticing that the majority of them were declining pretty severely. Ever
since the Russia and Ukraine war, this had been the case. I saw many news
headlines talking about the market, and how it was affected from this war. It was
then I realized, why isn’t there a way for us to predict these changes in the
market given sufficient news headlines? This is what I set out to solve and build. I
first found a dataset that had a diverse number of stocks; a diverse sentence
structure with news headlines; and a long enough time period. I will be using this
dataset to train a sentiment analysis model that I will then use to predict the
market fluctuations. A sentiment analysis model can analyze sentences and
predict whether the sentence has a positive connotation or a negative
connotation.

Along with the sentiment, a confidence score (or a certainty rating i.e. 0.9
for 90 percent confidence) will be given. This allows the user to understand how
certain the model is about a positive or negative sentiment. This means that the
more certain the model is, the more likely it will be that the stock will rise in the
near future. Now, only using one headline to predict the change of an entire
company’s worth is an inadvisable idea. It is *better* to use multiple headlines so
the model can be sure about the fluctuations in the stock. For example, if the
model uses 2000 headlines to predict the change in a stock, it is much more
likely that the change will happen because over 2000 headlines, it says so.
Realizing this, I was able to remove the values in the dataset which have too few
values to contribute anything to the training of the model and the predictions.

Background:
Before writing the code necessary, I already knew how to find accuracy

and how to create a viable dataset that can be used. An intermediate to
advanced understanding of python if needed to code in machine learning
especially because machine learning can be accessed in multiple languages and
presenting the results requires more programming knowledge than just python.
Also understanding what accuracy is and how it is applicable to this question is
crucial because it is the best way of gauging how well a model is performing. The
final piece of information one needs to code a machine learning model is being
able to lay out code so that it is readable and understandable to the audience.

This report will cover the dataset used in the next section, but it is crucial to
understand one thing about it. There was no true sentiment given in the dataset.
In other words, after building a model, there was nothing to compare the
accuracy to. So, finding an outside sentiment analysis model became prevalent
in this study. After running an outside model with the data being used, there was
finally something that was able to be compared to. Now, building a new model is
the next step. Before the final model, Tfldf Vectorizer and Word2Vec models were
used and provided worse results than CountVectorizer at 84 and 83 percent
accuracies respectively. Other classifier models used before the final Logistic
Regression model were Ridge Classifier, Random Forest Classifier, Decision
Tree Classifier, and Support Vector Classifier. All of these provided worse and

worse accuracies as they trained, going down to the worst accuracy of 72
percent.

Dataset:
The dataset used in this project consists of three columns: date, title, and

stock. The title and stock columns will be the two focused on the most in this
model. There are 101 different stocks that are documented in this dataset. Some
stocks were not used in this analysis because they had less than 100 headlines
which did not contribute to the model’s development. Any stock with more than
100 headlines was used to train and test the model. The model was trained on
80 percent of the data and 20 percent were tested on. This allowed for sufficient
training while also being able to test on enough data. About 10% of the training
data became validation data which serves a purpose equally vital as training and
testing data. The validation data allows the model to test on headlines that will
not be seen to the public and provide results to the programmer. This allows the
programmer to change the necessary code as seen fir by them. Moreover, the
validation data is actually used everywhere in machine learning around the world
because the results are not disclosed to the public, so programmers are allowed
to alter the code freely without worrying about backlash.

The graphs below were created via iterating through a dictionary. Each key
in the dictionary was a stock name while each key was a list of all the sentiments
from the exterior model. Creating the values as done by first iterating through a
list of all the stock titles from the dataset and then indexing the list of the exterior
model’s sentiment at the point where the stock name changed. This allowed for
these graphs to be built with the proper scale, and the programmer does not
have to choose a certain scale. This will also allow the model to print the graphs
of our sentiment analysis because keys will be the same and all that will change
is the value. From this, we can compare and contrast the accuracies of the two
models. Something to notice is the bias toward negative reviews. This is
understandable because negative titles gain more clicks, meaning more profit.
So, this is something that news companies do ofte. They will create more
negative headlines because it generates more clicks than a positive headline.

Apple’s headlines from exterior model:

AGCO’s headlines from exterior model:

Methodology:

In order to solve this problem, training a CNN (Convolutional Neural
Network) model will be the first step.

This model is a very basic description of a neural network. Given some input
(blue circles), the computer will process the input (black circles called hidden
layers) and distribute the data accordingly until the output is given (green circles).
The input can be an image or numbers, and the output will be a number. These
hidden layers have weights to them which allow the computer to understand what
is most important when extracting data4. For example, in this dataset, text will be
provided to the neural network to predict the sentiment of, and the most
important part of that would be the number of positive and negative words in
each sentence. Therefore, the number of positive and negative words will be
weighted more than other nodes because it is more important.

It is pertinent, however, to understand that machines understand numbers,
not words. Thus, we first need to change our data into numbers so the computer
will be able to understand it. To do this, the word to vector function
CountVectorizer() will be used; it yielded the best results out of all the vectorizers
tried, and it did so most consistently. This dataset requires a classification model,
and the model used was CNN(). This yielded the best results whereas the SVC
model yielded *insert*% accuracy. Recall that an outside model was used to
compare results to. This model was the pipeline model ‘sentiment-analysis’ from
BERT’s Classifier. Then, after lemmatizing the words, it was run through the
classifier model and appended to a list that could be compared with at the end.

In order to create the graphs shown above, the dataset had to be indexed
so that a new list was created for each new stock ticker. Since the dataset is

organized alphabetically by stock ticker, there will be two variables: one for the
start of the index and one for the end of the index. This would have to be
changed and added for each new stock ticker. Then, a new dictionary would be
created where each key is a new stock ticker and the value is a list of the
classifier’s results indexed properly. After that, all that was left was to iterate over
each key in the dictionary and create a histogram that properly depicted the
number of positive and negative results for each stock ticker. This also allowed
me to remove some unwanted stock tickers which only had a few headlines and
would not train or change my model in an effective way. After some manual
cleaning up, the dataset was ready to be used and trained with the CNN model.

Then, we tried using a Transformers() model which actually provided much
better results than previously thought. There were many ways the Transformers
model was better. The data was trained quicker, using validation data as a new
way of checking, and the data did not train for as long as it did with the CNN
model.Due to this decrease in time taken to train, the entire dataset could
actually be used. Previously, the dataset was shrunken since it took nearly 5
hours just to run the code once. So, the dataset was taken down to around 50,
000 values which allowed it to train, test, and evaluate accuracy faster. The next
reason why the Transformers() model was used was because it is far more
accurate than the CNN model; the CNN() model averaged around a 91.2%
accuracy, and the transformers model averaged around *INSERT* accuracy. The
Transformers model is a pretrained model that I train on my own data so it is
more validated towards the kind of headlines that it will be tested on.

Results and Discussion:
As stated previously, the Transformers() model was able to beat out the

CNN() model by a very thin margin. This means that for this particular sentiment
analysis case, the Transformers() model is more reliable as a source of
sentiment than the CNN() model. It is important to understand that this is not true
for all sentiment analysis cases, as both CNN() models and Transformer()
models are great in their own ways. There are benefits and downfalls to both:
one of the largest being that the Transformers() model is pretrained on some
data which allows it to be more accurate sometimes, however, this also leaves
room for a higher chance of overfitting which will result in even worse results.
Overfitting, in simple terms, basically means that the model is basing its
predictions off every little detail in the training data. This will not allow it to

perform well on the testing data because the data will not have the exact same
features.

This is the result from the Transformers() model for the AAWW stock:

A large source of error in this model can come from two false positives or
two false negatives. This means that when comparing my model to the exterior
model, both of the models could have predicted the sentiment of a headline
incorrectly, thus making it seem like both of them had predicted correctly. Now,
this is very rare since both models were trained and tested and validated well
and properly, however, this margin for error still exists. This is important to take
into account if using this model to predict a stock. Going back on a previous
topic, this further solidifies why we must use multiple headlines to predict the
sentiment because if just one or two are used, the margin for error is
exponentially larger. Using many values will allow the rest of the sentiment to
negate the double false negative/positive results.

This is not a bad thing, however. It shows how there is always room for
improvement and that it is okay for things not to be perfect. We could make this
model more perfect by having a person manually go through and submit their
sentiment analysis for every sentence, and then we would have a much more
reliable quantity to compare with, as opposed to using another artificial
intelligence model that might not be correct either. This would take a very long
time, though, since the entire dataset has over a million headlines.

The CNN and Transformers() models thoroughly outperformed the models
listed in the background section by over 10 percent. This shows the power of
these two types of models, but remember that this does not mean the models

listed in the background section are bad. In fact, it means that those models are
better suited for a different type of classification purpose (note that the difference
between classification and regression questions are that classification questions
have no numerical answer and regression questions have numerical answers.)
Many machine learning questions hardly have one correct answer, and most
have multiple ways to go about them.

Conclusion:
So, we now know the ins and outs of this machine. How it uses an exterior

model to compare against to test accuracy. How it uses a Transformers() model
to train, validate, and test its data. How the dataset has over a million quantities
that was shortened to have faster training and testing times. The main thing to
understand from this model is not its results, that is easy to understand from any
paper about its model. It is that certain machine learning techniques are used for
certain projects. Another thing that was seen through this project was human
nature, and how negative titles generate more views, which in turn generates
more profit. This takeaway will help provide context to the negativity of news
outlets and sources. Finally, try to use more than one way when tackling a
problem because it could work out better than another.

Acknowledgements:
Thank you to my family, my teachers, and my mentor for this project: Eric
Bradford.

References:

Bentrevett, “Bentrevett/Pytorch-sentiment-analysis: Tutorials on getting
started with pytorch and torchtext for sentiment analysis.,” GitHub. [Online].
Available: https://github.com/bentrevett/pytorch-sentiment-analysis.
[Accessed: 26-Aug-2022].

Letthedataconfess,
“Sentiment-analysis/build_your_first_sentiment_analysis_project_from_scrat
ch.ipynb at main · letthedataconfess/sentiment-analysis,” GitHub. [Online].
Available:
https://github.com/letthedataconfess/Sentiment-Analysis/blob/main/Build_yo
ur_First_Sentiment_Analysis_Project_from_Scratch.ipynb. [Accessed:
26-Aug-2022].

