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T-RECSYS+: An Improved Music Recommendation System
Anonymous Author(s)

ABSTRACT
A recommendation system is a type of filtering system that predicts
a user’s preferences for a specific item. Its purpose is to suggest
items that the user might find appealing. In our research, we build
a music recommendation system to make prediction of users’ lis-
tening preference. Our system extends the previous T-RECSYS
algorithm which uses a hybrid of content-based and collaborative
filtering as input to a deep learning classification model. We en-
hance the performance of this algorithm by incorporating the latest
Spotify API, which provides access to 11 music features including
danceability, liveness, tempo and so forth. Additionally, we leverage
more advanced deep learning models to achieve a higher level of
precision and accuracy in our recommendations. In detail, we pro-
mote the precision scores from the original 88% to the current over
95%. Our code is available at https://github.com/zcj0125/T-RECSYS-
An-Improved-Music-Recommendation-System

CCS CONCEPTS
• Information systems→ Collaborative filtering; •Human-
centered computing → Collaborative and social computing
systems and tools.
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ing, Spotify API
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1 INTRODUCTION
Music Recommendation Systems are becoming an increasingly
important part of our daily lives. In today’s fast-paced world, where
we have instant access to millions of songs, the idea of discovering
new music that aligns with our preferences can seem daunting.
Fortunately, music recommendation systems provide a solution to
this challenge.

Wewant to create amore accuratemusic recommendationmodel,
and we noticed a paper published in 2019, which created a novel
algorithm for recommending music to users. The paper introduces
a new system called Tunes Recommendation System (T-RECSYS).
It scores each song in a database according to user preference by
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utilizing a learned hybridization of content-based and collaborative
filtering, returning the top-k scoring songs [3].

After studying this paper and the algorithmic idea in depth, we
found that this paper may leave room for further innovation. We
intend to improve this model in the following aspects to make the
recommendation system more accurate.

• To enable the content-based filtering in T-RECSYS, the orig-
inal paper considers six categories of metadata: genre, artist
type, artist era, mood, tempo, and release year. Consider-
ing that three of the categorical features (artist era, tempo,
and release year) are unorderable and the deep learning
model only accepts the numeric values input vector, one-
hot encoding is necessary. This will increase the number
of dimensions in the input data, the memory usage and the
computational cost. In our experiment, we utilize the Spo-
tify API [10] to get 11 numeric features, and each feature
value can be used to input the deep learning model directly.
Also, some features are more accurate and more intuitive.
(For instance, in the tempo part, we have the specific beats
per minute, instead of ‘slow’, ‘medium’ and ‘fast’).

• The original paper gave the description of the T-RECSYS
and the general implementation idea. In our paper, we
clearly illustrate the whole data processing procedures to
make sure the readers can more easily understand the algo-
rithm and the algorithmic process in practice. In addition,
with the help of the Uniform Resource Identifier (URI) of
each track, we can easily find the frequency of two songs
appearing together in a dataset of playlists, and calculate
the similarity of two song pairs (collaborative filtering im-
plementation). Adding the similarity features into the input
layer, our system can easily know whether one song is part
of the playlist and provide more accurate predictions.

2 RELATED RESEARCH
Early in 2012, a survey of recommendation systems was done by
Song et al. They tried to survey a general framework and state-of-art
approaches in recommending music [9]. In this paper, they identify
three key components in music recommendation - user modelling,
item profiling, and match algorithms. At that time, the question is
mainly about how to organize and manage the millions of music
titles available, so in the first step, they modeled the user profile and
the music item profile. Then, some state-of-art approaches in music
recommendation were introduced including Metadata Information
Retrieval, Collaborative Filtering, Content-basedMusic Information
Retrieval, Emotion-based Model and Context-based Information
Retrieval.

In 2017, Fang et al. note that “Music has been shown to have
a motivational effect that can encourage people to exercise more
strenuously or for longer periods of time" [2]. To address the prob-
lem that much audio is likely to be a poor match to any specific user,
they propose to use a User Profiling (UP) step. They chose the Mil-
lion Song Dataset (MSD) as the database and applied questionnaire

1

https://github.com/zcj0125/T-RECSYS-An-Improved-Music-Recommendation-System
https://github.com/zcj0125/T-RECSYS-An-Improved-Music-Recommendation-System
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’23, July 2023, Taipei, Taiwan Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

to prune the initial 384,500 songs to 1,000 songs the user is more
likely to enjoy in order to make the recommendation problem more
tractable [2]. After the questionnaires were filled in, they employed
clustering technique to divide users into different groups based on
their listening taste. Finally, they obtained the group’s profile by
averaging and rounding the user’s ratings for each of the features
listed by the users. Although the paper compared the group-based
profiles results to the individualized profile results and proved its
validity, it may be too subjective if their group-based results were
completely derived from the questionnaires. The outcome of the
survey could be inaccurate and also, the result of exercise music
recommendation is not suitable for everyone.

In 2021, Fathollahi et al. proposed a music recommendation
system based on a similarity system. For this measurement, they
considered cosine similarity and Euclidean distances between fea-
ture vectors [8]. Innovatively, they found they achieved a better
accuracy by combining acoustic and visual features. To analyze
the acoustic features, they utilized chroma, a feature which groups
frequencies into the associated chromatic class independent of oc-
tave. Chroma relationships are useful for analyzing music by key
and identifying harmonic relationships. Also, they introduced Mel-
spectrogram to analyze the power spectral density of a sound. In
the experiment, they designed two models. The first model had only
a single input feature while the second model had three features:
Mel-spectrogram, chroma stft, and spectral contrast (a powerful
feature for classification and similarity detection). By feeding differ-
ent inputs into the input layer, they could prove the system valid by
expecting a better result on the output of the second model. How-
ever, according to the results, it could be concluded that databases
containing short-time music pieces have not yet achieved high
accuracy for tasks like similarity measurement and classification
[8].

In 2019, the T-RECSYS was introduced by Fessahaye et al. [3].
They combined both collaborative filtering and content-based filter-
ing to build a classification deep learning model. By setting different
levels of discrimination thresholds, their system was able to main-
tain fairly high precision in each trial. They also calculated the
sample standard deviation between all the trials and proved the
system stable. However, as we describe as above, the system still
has large room to be improved. Our main task is to recreate the
T-RECSYS, make the whole process more clear and get a higher
precision in 50% threshold by default.

3 DATA
3.1 Dataset
We employ the Spotify Million Playlist Challenge Dataset as our
research dataset. The dataset contains 1,000,000 playlists, includ-
ing playlist titles and track titles, created by users on the Spotify
platform between January 2010 and October 2017 [1]. In addition,
this dataset also provides detailed descriptions of each playlist and
the URI information of the corresponding tracks. With the help of
specific API platforms, we can obtain elaborate track features as
data input to the machine learning system.

3.2 API Platform
In our experimental implementation, we accessed the Spotify API by
the way of the spotipy python library [5]. The Spotify API is a great
public tool, allowing the use of Spotify’s wealth of data on music to
build many kinds of systems [10]. By inputting the URI information
of each track into the Spotify API, we were able to retrieve 11 meta-
data attributes such as danceability, energy, key, loudness, mode,
speechiness, acousticness, instrumentalness, liveness, valence and
tempo. Given that all metadata values are numerical and ordinal,
we utilized them as the features of each track and fed them directly
into our deep learning system as the input vectors.

Here is an example of one set of 11 feature values:
'danceability': 0.732,
'energy': 0.75,
'key': 11,
'loudness': -6.366,
'mode': 0,
'speechiness': 0.231,
'acousticness': 0.00264,
'instrumentalness': 0,
'liveness': 0.109,
'valence': 0.401,
'tempo': 155.096,

In our research, extracting features from the contained songs
proves to be valuable, as it enables us to gain a deeper under-
standing of the interrelationships between songs. This allows us to
effectively perform clustering and construct a personalized music
recommendation system[10].

4 ALGORITHM
4.1 Overview
Our algorithm is inspired by T-RECSYS[3]. It can be outlined as
follows:

• For every playlist with over 10 tracks, we randomly select 9
songs (since these tracks are collected in one playlist, there
is a high probability that these tracks will be loved by users)
from the playlist and an additional 10th song (either from
the same playlist, representing a positive pair, or randomly
chosen from other playlists, representing a negative pair)
that the user may or may not like.

• The features of the 10 tracks are then inputted into our
deep learning model, which returns a probability value to
predict the probability that the user would enjoy the 10th
song based on the first 9.

Through the training process, the network learns to analyze the
user’s musical preferences based on their existing playlists and
continuously recommends new songs that the user is likely to
enjoy.

4.2 Collaborative Filtering
Collaborative filtering systems predict a person’s affinity for items
or information by connecting that person’s recorded interests with
the recorded interests of a community of people and sharing rat-
ings between like-minded persons [4]. In our implementation, the
collaborative filtering measures the similarity between the first 9
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Figure 1: T-RECSYS+ neural network. The input to the network is of size 128 = (10 songs in one sample)
×(11 features per song) + 9 Sorenson indices + 9 volume measures.

songs and the tenth song to determine whether the user would
love the tenth one or not. In the Spotify Million Playlist Challenge
Dataset, The URI of the song is the only credential of each song
(because song renaming is very common). Therefore, the similarity
can be defined as the frequency with which the two songs’ URI
appear together in a dataset of playlists[3].

We calculate the Sorenson index for each pair:

2 |𝑋 ∩ 𝑌 |
|𝑋 | + |𝑌 |

where X and Y represent the set of playlists that the first song
and second song in the pair appear in respectively [3].

The Sorenson index is a vital feature which determines whether
the tenth song is included in this playlist. By adding this index into
our input data pairs, it can significantly improve the operational
efficiency and prediction accuracy of the whole system.

4.3 Data Processing
According to the T-RECSYS described above, our full dataset con-
sists of positive pairs and negative pairs. The positive pairs repre-
sent all the ten songs enjoyed by the user, while the negative pairs
represent that the first 9 songs enjoyed by the user and a random
10th song. In positive pairs, we randomly sample 10 tracks from
their 11 features in one playlist, which means we can obtain a (10,
11) size matrix in each playlist. The negative pairs are similar to the
positive pairs, but the tenth song in each matrix is replaced with a
randomly selected song from another playlist that is not found in

the original playlist. After that, we can concatenate the 11 features
from the 10 songs with the Sorenson index features and volume
features to get a complete sample to feed forward in the network.

It should be noted that if the variance of a certain feature (like
tempo) is several orders of magnitude larger than that of other
features, it will dominate in the learning algorithm, hindering the
learner from learning from other features, thus reducing accuracy.
In order to make the features the standard normally distributed
data (mean of 0 and variance of 1), we utilize the StandardScaler
class in the sklearn to scale our data [7].

4.4 Deep Learning Model
After meticulously collecting and processing the dataset, it can
be utilized as input for a deep neural network to train the model.
Subsequently, thorough testing will be performed to ensure the
model’s ability to provide precise music recommendations.

Some hyperparameters used in the process are described in Table
1.

We utilize PyTorch as our deep learning framework [6]. T-RECSYS+
has four full connection layers with ReLU activation, three of which
use dropout during training, a final sigmoid activation function.
The number of nodes in the full connection layer is in order: 128 ->
20 -> 7 -> 3 -> 1. The dropout rate in each layer is 0.2.

In our implementation, 100,000 playlists were used. Among them,
96,428 playlists contain over 10 songs, which means that we have
96,428 postive pairs and 96,428 negative pairs. We randomly spilt
our full dataset into 80% training set and 20% testing set. We use

3
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Table 1: Hyperparameters for Training T-RECSYS+

batch size 16
learning rate 0.001
dropout ratio 0.2

number of epoch 20
training threshold 0.5
testing threshold 0.5

cross-entropy loss for the classification task, and compute an aver-
age accuracy performance metric.

5 RESULTS
We evaluate the performance of the machine learning model by cal-
culating the test accuracy of the model on the testing set. The input
data is fed through the model in a forward direction and generates
the output. We compare the each output with the testing threshold
and get a binary prediction value. In our implementation. we set the
testing threshold as 0.5, which means that it will be predicted as a
positive recommendation if the confidence score exceeds 50%. After
the operation on the testing set, the average accuracy can be defined
as the ratio of the number of correctly predicted samples and the
total number of tested samples. As depicted in the Figure 2, we have
found that our average accuracy values consistently remain above
97%, even in repeated trials with different random data samples.
Hence, we can consider the system to be very efficient, reaching
and sustaining excellent performance on the test set after only a
couple epochs of training. We think this is largely due to the use of
the Sorenson index in training; when training without Sorenson
index, the test data reaches only approximately 70% performance,
but with the Sorenson index included, performance is consistently
above 97%.

Our final result can be shown as a confusion matrix. The matrix
is defined as [

𝑇𝑁 𝐹𝑃

𝐹𝑁 𝑇𝑃

]
where the TP indicates the true positive, the FN indicates the false
negative, the FP indicates the false positive and the FP indicates the
false positive.

Here is the confusion matrix of our 4th (last) trial, after finding
the preceding 3 trials to be consistently performing:[

18370 956
60 19186

]
To finally evaluate our model and analyze the result, we use the

precision metric:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

The precision value can be regarded as the proportion of actually
positive samples in the positive samples predicted by the classifier.
In music recommendation system, this value can be described as
how often a recommended song is actually enjoyed by the user. In
our implementation, our precision value can reach above 95.3%,
higher than 88% in the original paper. This result may suggest that
in addition to strong predictive capabilities on playlist matches,

an extended version of this system could give fairly accurate rec-
ommendation to the user by analyzing their individual listening
tracks.

6 CONCLUDING REMARKS
In this experiment, we designed a deep learning model to extract
million music features for the improvement of the recommendation
system, T-RECSYS, which we refer to as T-RECSYS+. We introduce
a new API platform and facilitate the neural network model and
finally get remarkable results. It is also notable that there are some
possible avenues for the future research. One of them is the data
processing issue. When sampling the 10th song from other playlists
into the negative pairs, there is no way to know whether the user
would or would not like the 10th song. There is possibility that the
user would fairly enjoy this song and even the song just exists in
the original playlist. Also, considering about the spatial complexity,
we choose 10 as our data size. For further research, more songs
could be extracted from one playlist to obtain higher precision.
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