Using Machine Learning to Detect
Alzheimer’'s Disease in MRI Scans

Sam Lizotte

Table of Contents
AADSEFQCT s s o e s e DA € 2

INEFOAUCTION s e s s s PAJ € 3
BACKGIOUNG.cc s s s s s DAJ € 3
DALASEL .. s oo DA € 4

METNOAOLOGY s s s s e s PAG € 5
DECISION TIEES s s s s e PG € 5
LOQISEIC REGIESSION. ..o PAG € O
NEUFAL NEEWOIKS ... s s s s PAG € 7
Convolutional Neural NEtWOIrKS...... s PAG € Q

VGG19 Convolutional Neural NetWorK . PAGE 10

RESULLS QN DISCUSSION .o QG € 11
CONCLUSTON s s s s s PG € 1Q
ACKNOWLEAGEMENTS .. s s s s PQ G € 21

1T 0] 1T T | 2= 0 RSSO o= (6 | 24 |

1. Abstract

Alzheimer's Disease (AD) is a neurological disorder that slowly eats at the
brain and affects a patients memory, thoughts, and behavior. It often develops in the
later stages of life, and is a very heartbreaking disease to watch a loved one go
through. As neurologists get closer to finding a cure for Alzheimer's Disease (AD), it's
still necessary to catch the disease in its early stages to ensure the best quality of
life for those who have it. Along with quality of life, it's important to know if a patient
has AD in order to protect them from autoimmune disorders that can worsen their
symptoms or pose a threat due to their vulnerable state. We aimed to answer the
question about if Magnetic Resonance Imaging (MRI) scans, which are often used in
the diagnosing of other neurological disorders, can be used to diagnose AD in
patients. While neurologists have already attempted this, we wondered if we could
take it a step further by using machine learning to classify the data and separate it
into different categories of dementia in order to properly diagnose a patient, as well

as determine the severity of their AD. While conducting this research, we found
surprising results, shown in how one of our inferior models reported nearly perfect
accuracy while a model that was supposed to be superior reported a significantly
poorer accuracy. Overall, our models reported back accuracies over 70%. These
models also had to be incredibly complicated, with the image data being put into it
having to be processed through hundreds of layers if we wanted a satisfactory
accuracy. We concluded that while machine learning did report back very high
accuracy, it is not a perfect tool for detecting fallacies in MRI scans, it is not meant to
be the sole diagnostic for AD.

2. Introduction

Alzheimer's Disease (AD) is a neurological disorder that affects around 500,000
people per year. This disorder is a form of dementia, damaging the brain and
affecting a patient's memory, thinking, and behavior. The disorder gets severe
enough to the point where it interferes with the patient's daily life, eventually
shutting down their brain. It is currently incurable; however, diagnosing the disorder
early can help with preventing it and ensuring the patient a higher quality of life.
There are many methods neurologists use to detect this disorder, including brain
scans such as PET scans and MRI scans. MRI scans are typically not seen as a tool
that would be solely used to diagnose AD, but our research aims to see if machine
learning can change this fact. By taking our dataset, which uses vision data, and
plugging it into multiple categorical models, we aimed to see the accuracy in which
a machine could detect the difference between brains with Alzheimer's and brains
without Alzheimer's. We even included different stages of dementedness, ranging
from none to moderate severity. This problem is a supervised classification model,
where the images are processed through and sorted into different categories.
Hopefully, with this data, we can work on Alzheimer's detection in order to keep
those with Alzheimer's as healthy as possible.

3. Background

Magnetic Resonance Imaging (MRI) scans are not enough to diagnose
Alzheimer's Disease (AD) alone. Researchers are working on this problem, making
different types of MRl models that will one day be the sole diagnostic tool used to
detect Alzheimer's. One example of this is the qGRT MRI scan, although it is still in its
early stages. The qGRT MRI scan is a subset of MRI scans that can detect signs of
dementia in patients in under 10 minutes. These qGRT MRI scans are focusing on
patients with early stages of AD rather than late stages, due to the necessity in

diagnosing the disease early. Currently, the gGRT MRI scan is hot enough to
diagnose on its own; however, researchers are working on developing it so that one
day it can replace other diagnostic methods such as spinal taps or PET scans. PET
scans are similar to MRI scans, although they are much more costly and the results
take longer to receive. Spinal taps can cause pain due to the removal of
cerebrospinal fluid from the lower back, and because of this are considered more
‘invasive” than a brain scan is. The qGRT MRI scan presents a solution that is both
less expensive, quicker, and easier on the patient. These models look for fallacies in
the brain in the form of dark matter, which would signify deterioration in the brain
caused by dementia. These models may still be in the works, but are showing
exponential improvement and may one day be solely used to diagnose AD, showing
that it is possible for MRI scans to detect early onset AD in a patient.

4. Dataset

The dataset used in our project was a 6,400 image dataset, and all images
were used. The data was vision-based data, due to the fact that it consisted of
images. These images were Magnetic Resonance Imaging (MRI) scans (although
they were not qGRT MRI scans) from patients with different severities of dementia,
which were separated into four classes: no signs of Alzheimer's, very mild
Alzheimer's, mild Alzheimer's, and moderate Alzheimer's. There were no MRI scans
with severe Alzheimer's Disease. There were also only 64 images with moderate
severity, which could serve as a potential bias because most of the images were
either slight cases of Alzheimer's, or no signs of Alzheimer's. In fact, most of the
image data was of those with no signs of Alzheimer's; however, there was still a
50/50 split between the number of images without signs of dementia and the
number of images with any signs of dementia, no matter the severity. In the
non-demented class, there were 3,200 images. There were 2,240 images in the very
mild demented class, 896 images in the mild demented class, and again, 64 images
in the moderate demented class.

This data was collected from several public repositories, including hospitals,
and put together into one set. All images are in 128x128 format, and have already
been pre-processed before being put into the dataset. Because the images were
already pre-processed, the only thing left to do before classifying the images was
making the numpy arrays so that the computer knew which images had what
classification.

The normalized images acted as the X_array in the training data, while the
classification y_arrays made with the assigned numbers were the reference arrays.
The data was split into 75% for training, or 4800 images, leaving 25%/1600 images
for testing data. The data was also shuffled to ensure that both training and testing
data had images from every label possible, to prevent incorrect classification which
would lead to a faulty model with poor accuracy:.

5. Methodology/Models

Four machine learning models were used in order to classify the data:
decision trees, logistic regression, neural networks, and convolutional neural
networks.

Decision Trees

Decision trees are classification models with different layers that the images
pass through. Similarly to a tree map, which looks at all possible outcomes of a
question, decision trees start with an initial problem. Based on the answer, or the
details found in the image, the decision tree makes different “decisions” that classify
the images into different categories. Decision trees are simpler models, as adding
too many layers can make them too complex and result in overfitting. Overfitting is
when a model gets too used to its training data, and in turn, performs poorly when
the testing data is run through it. This defeats the entire purpose of the model, so it is
important to avoid overfitting in models. In the case of the decision tree, it's to make
sure that the data is processed through as few “nodes,” which process and
categorize the data, as possible.

Root Node

Decision 1% 1?-;)0 ;" \

Node

Undej‘s‘tomdmfj the risks to

Lea:‘l Nodes erevent o heart attack.

Diagram of a Decision Tree

The root node is the question, or dataset put into the decision tree model. The
internal nodes act as the decision makers, while the leaf nodes are the categories
that the image data is separated into. For the decision tree to make these choices on
which images go where, a calculation for entropy is used. Entropy is a value
between 0 and 1 that determines how an image should be classified before being
passed through to the next set of nodes, and decision trees aim to find the smallest
entropy possible in order to get the highest accuracy. Decision trees want the
smallest entropy possible because this means there are the least amount of
impurities in the data and it is being correctly, and uniformly classified.

Logistic Regression

Logistic regression is a type of machine learning model that classifies data by
measuring the likeliness of it being in a certain class. Logistic regression is a more
complex form of linear regression, although it is typically not seen as a very
advanced model, either. Logistic regression uses an equation of ‘log odds" to
determine the odds, or likelihood, of a piece of data being in a certain class. The “log
odds" equation is: Logit(pi) = 1/(1+ exp(-pi), and In(pi/(1-pi) = Beta_0 + Beta_1"X_1+ .. +
B_k"K_k. Logit(pi) is the output, and x is the input. This log odds equation is run

through the dataset using a for loop for a specified amount of iterations. For this
project, we used a logistic regression model with 200 maximum iterations, and then
one with 1000 maximum iterations. This model specifically used hominal logistic
regression, due to the fact that there were four possible outcomes for the data to be
put into. If the categories had any specific required order to them, then the data
would need an ordinal logistic regression model, but since all categories hold equal
value, the data used the hominal logistic regression model.

Neural Networks

Neural networks are a type of classification model that use different layers of
‘neurons” to classify and separate data into different categories. Neural networks are
modeled after the human brain, which is why the nodes that images pass through
are labeled neurons. Each node has a weight attached to it, which is usually
randomized during training while the computer is learning which types of images go
where. The dataset is put through the input layer, and then passed through a certain
number of hidden layers before being classified in the output layer. The number of
hidden layers depends on the model, and is typically considered a hyperparameter
due to how often it is manipulated to test accuracy. Our model used 200 hidden
layers.

Deep neural network

Input layer Multiple hidden layer Output layer
IS €
q; &
£ £
L L

Diagram of a Neural Network

The formula for a neural network looks like this: Zwixi + bias = wix1 + w2x2 +
w3x3 + bias and output = f(x) = 1 if 2wix1 + b>= 0; 0 if Zwix1 + b < 0. Each neuron looks
at a certain matrix of pixels to look for similarities or differences when classifying.
The bias refers to the weights of the nodes, and the 1x1, 2x2, etc. refer to the pixel
matrix that the neurons are “looking" at with computer vision.

In order to properly function as a neural network, non-linear activation
functions are required to determine the output of the model. Non-linear activation
functions, as stated in the name, add a non-linear component to the neural network
which makes the model more complex. The equation usedtodo soisy = a (w1 x1 +
w2 x2 +..+wn xn +b), with a as the activation function that is triggered to create this
non-linearity. Without these functions, the input data would simply be passed
through one layer, which would be no different than putting input data through a
linear regression model.

Nonlinear Data

30
s L I .
9, 00 %0 % :
o o ®
225 0 99® o @
4)
/. '
o ®
® L
15 ’ LR]
b4 k.
. 3 L
Y ®
L
7.5 \
e b ™
&
LY
0
0 15 30 45 B0

Graph of a Non-Linear Activation Function

Visually, these functions make the output data appear as a curve rather than a
straight line. This makes the data more flexible, which therefore increases the quality
of the model as a whole. In our neural network, we used the Rectified Linear Unit
(RelLU) function and the softmax function.

ReLU

R(z) =max(0, 2)

0
-10 -3 0 3 10

Graph of a Rectified Linear Unit function

The Rectified Linear Unit function is a rather simple function in its
composition, but it significantly improves the performance of the neural network
model when classifying data. Since the RelLLU function not only produces linear
outputs, but can also return true zero values, it is easier for the computer to read and
therefore the most optimal activation function to use in a neural network model. But
these true zeroes can also pose a problem, as the RelLLU function cannot process
negative input values and creates the issue of “dead” neurons in the model. If a
neural network has “dead” neurons, then it will not process certain data inputted into
the model, and therefore will return an incorrect output; however, variations of the
RelLU function have been created to quell this problem.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a more complex form of neural
networks that have the same outline as a neural network, with an input, output, and
hidden layers that images pass through. However, CNNs have other layers besides
those of neurons that help make it superior when it comes to specifically classifying
data. Convolutional layers, which have neurons just like the hidden layers in a neural
network do, convolute the images in order to make them easier for the computer to
read. By simplifying the images, the computer can more easily find the differences in
images that would put them into different classifications. CNN models typically have
two convolutional layers that are activated by Rectified Linear Units (ReLU), which
help make the convolution process easier. Our model used two convolutional layers,
with different amounts of neurons in them acting as the hyperparameters.

Convolutional layers also have pooling in them, which reduce the amount of
things that the computer is looking at by grouping, or “pooling” certain things
together. Our CNN model used MaxPooling, which sends the pixel with the highest

value to the output layer. The pixel with the highest value is determined by the
matrices of pixels that the neurons look at, being combined into one value with the
convolutional layer.

Our model also used a BatchNormalization layer, which normalized the data
and therefore made it easier for the data to pass through the computer. Although our
data was already normalized, BatchNormalization layers, which go after the
convolution layers, normalize the images even more. Our model then used a dense
layer with a value of 128, which runs the data through the equation output =
activation(dot(input, kernel) + bias) to classify the data. Before passing our images
through the dense layers, we flattened the data in order to run it through the dense
layers more smoothly.

While training the data, the model used a certain amount of epochs to run the
data through before being sent to testing. Epochs are similar to the amount of trials
that a CNN runs, sorting through the data and reporting an individual loss and
accuracy for each epoch, as well as a validation loss and a validation accuracy. Loss
is a unit of measurement to test how well the model is evaluating the data. It is
important to make sure that loss is the smallest value possible, while accuracy is the
highest value possible.

VGG19 Convolutional Neural Network

22 =224 =3 224 x 224 = Gd

ya
V4

7/ 12x[l12x128

V)
1 . X%?;-JLHKJM

I"HX I w B3 TxTwdl2
HL”‘] L "é%_h 1% 1% 4096 11 1000
H convolution+ Rel.LT
,’ f :' max pooling
4 fully connected4+HeLU
/j/ | softmax

Diagram of a VGG Convolutional Neural Network

Compared to a regular convolutional neural network model, which only uses
2-4 convolutional layers, the VGG19 model (VGG stands for “Visual Geometry Group”)

uses 19 convolutional layers. This classifies it as a "deep” model, meaning that it uses
incredibly small kernels to fully look through and classify image data. Due to their
complexity and intricacy, these models are better for larger datasets but can also be
incredibly time-consuming due to the size of the model. These models also require
more epochs to properly train the data, adding to the amount of time it takes to fully
train the data before it can be tested.

6. Results and Discussion

Results with Decision Tree Model

The first model used, the decision tree, reported an accuracy of ~70% the first
time, and then 68% the second time. This was expected as the decision tree model
was not that complex, and no hyperparameters were modified to see if the accuracy
would get any better.

1.0+

0.8

0.6

0.4

True Positive Rate

0.2 1

0.0 — AUC =0.75

T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 1 - Decision Tree ROC Curve

The receiver operating characteristic (ROC) curve for the decision tree is a way
of measuring true positives and false positives. The humerical values on the x and
y-axis refer to the accuracy, showing which images were correctly classified as true
positives compared to which images were incorrectly classified as false positives.

Our ROC curve showed the area under the ROC Curve (AUC) was 0.75. While this
value is not bad, it's not the best AUC that could have been given by the model. The
closer that the AUC value is to 1, the better the model, because this would indicate
that all values have been classified correctly and were true positives in the model.

Significant Accuracy in Logistic Regression

The second model, the logistic regression model, reported back with the
highest accuracy, increasing from an accuracy of around 50% the first run to 97% the
second run. The difference between these two models was the maximum amount of
iterations used. Due to the fact that the dataset was so big, the model could not run
through all of the data with merely 200 iterations, resulting in a poor accuracy. The
iterations in this model was the hyperparameter that we experimented with, and
although 1,000 iterations still did not completely run through the data, it was enough
to report back a near perfect accuracy. This accuracy seemed a bit too good to be
true, and we suspected that something went wrong in the model to report back
such a good accuracy.

- 700

- 600

500

400

True label

300

200

100

0.0 1.0 2.0 3.0
Predicted label

Figure 2 - Logistic Regression Confusion Matrix

We used a confusion matrix to look at the results of the logistic regression
model. The confusion matrix is another chart used to detect false and true positives,
as well as false and true negatives. The numerical values in the x and y-axis refer to
the values that we assigned the different categories of images from our dataset
when we processed and put the data into our y-array. Therefore, this confusion
matrix shows that 799 of the non-demented MRI scans were correctly classified, 558
of the very mild demented images were correctly classified, 194 of the mild
demented, and 13 of the moderate demented. 13 may not seem like a large value,
but recall on the fact that we only had 64 images of moderately demented patients,
and most of those images had been put into the training data. This confusion matrix
is reporting on the accuracy for the testing data, meaning that it is going off of fewer
images run through the computer. The confusion matrix has many 0s in it, meaning
that most images were correctly classified, which reflects the 97% accuracy reported
earlier from the test set data. This confusion matrix debunks the idea of anything
going wrong in the data, showing that most images were actually classified correctly.
While this is good news for our data, it also begs the question as to why our logistic
regression did so well as a model, while our CNN still did very poorly.

Results in Neural Network Model

As expected, the neural network model did impressively well, reporting back
with an accuracy of 87% the second time, and then 91% the third time. The
hyperparameter in this model was the amount of hidden layers. Like the logistic
regression model, when only 30 hidden layers were used, the neural network model
reported back with an accuracy of around 33%. We quickly identified the problem
being that the model didn't have enough layers to properly process the data, and
changed the number of 30 hidden layers to around 200 hidden layers. While this
was a big jump, our model reported back with an accuracy of 87%, only getting
better after running our data through the model once more.

- 700

- 600

500

400

True lahel

300

200

100

0.0 1.0 2.0 3.0
Predicted label

Figure 3 - Neural Network Confusion Matrix

Like in the logistic regression confusion matrix, most of the images were
classified correctly in the neural network model. The numerical values on the x-axis
and the y-axis are the same as they were in the y-array and in the confusion matrix.
This confusion matrix is telling us that in the testing data, 758 images were correctly
classified as non-demented, 484 as very mild demented, 201 as mild demented, and
20 as moderate demented. Compared to the logistic regression model, the neural
network model was better at determining which MRI scans had more severe cases
of dementia compared to those that had less severe cases or none at all. Although
the difference is small, it is still important to note. The neural network also had more
misclassifications compared to the logistic regression, but this is shown in the

accuracy as the neural network model has slightly worse accuracy compared to the
logistic regression model.

1.0 1

0.8

0.6

0.4

True Positive Rate

0.2 1

0.0q9 -~ — AUC =096

T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 4 - Neural Network ROC Curve

We also used a ROC curve for our neural network model, which turned out
much better than the ROC curve used for the decision tree. The AUC was 0.96
compared to 0.75, which means that more data was correctly classified as a true
positive rather than a false positive. While this is not perfect, that is good, because if
the accuracy were perfect, then that would mean that there was a problem with the
data- potentially overfitting. It makes sense that the AUC for the neural network is
much better than the AUC for the decision tree, due to the fact that the neural
network reported back a significantly better accuracy and was a better model to use
for this data.

Shocking Results in Convolutional Neural Network Model

The convolutional neural network (CNN) reported the worst accuracy by far,
which was incredibly surprising because the CNN was expected to be the best
model. Originally, the CNN repeatedly reported back accuracies in the 40s, but
eventually was brought up to accuracy in the 50s. While this accuracy could reflect
on a faulty model, it could also reflect on the fact that the machine is simply not fit to

process Alzheimer's in MRI scans and must be worked on before it is trustworthy.
However, due to the amount of models that reported accuracies over and around
70%, we are more likely to believe the former.

The CNN itself had 12 layers, which may not have been complicated enough
for the caliber of the data being fed into it. Similarly to the logistic regression model,
the CNN may have needed more layers to properly process the amount of data that
was being put into it. Our model used Rectified Linear Units (ReLU) to activate the
convolutional layers, and had two convolutional layers processing the data. We first
tried 32 neurons in the first convolutional layer, and 64 in the second. After that, we
tried 64 neurons in the first layer, and 96 in the second. We decided on keeping 32
and 64 as the values of neurons in the convolutional layers, due to the fact that the
second model with more neurons was reporting an even poorer accuracy. This could
be a sign of overfitting, which meant that the model probably needed less
convolution because the images were becoming too simple for the computer to
classify properly. Each convolutional layer had a BatchNormalization layer after it,
meaning the data was normalized before being sent to the second
BatchNormalization layer, and then finally put through the dropout and dense layers.
Once again, because the data was flattened, normalized, and convoluted so much, it
could have been too simple for the computer to properly read.

While training, the model had between 10-13 epochs, as the number of
epochs also served as a hyperparameter. This could have been too few epochs for
the computer to properly read the data and classify it correctly before getting sent
to the testing process. The validation data was the testing data used in all of the
other models.

Epoch 1/13

38/38 [] - 21s 179ms/step - loss: 1.9474 - accuracy: ©.3348 - val_loss: 2.2983 - val_accuracy: 6.4944
Epoch 2/13

38/38 [] - 65 15Bms/step - loss: 1.4834 - accuracy: ©.4817 - val_loss: 2.2897 - val_accuracy: ©.4944
Epoch 3/13

38/28 [] - 65 145ms/step - loss: 1.2739 - accuracy: @.4873 - val_loss: 2.2884 - val_accuracy: @.4944
Epoch 4/13

38/38 [] - 65 146ms/step - loss: 1.2136 - accuracy: 8.4779 - val_loss: 2.2686 - val_accuracy: @.4944
Epoch 5/13

38/38 [] - 65 145ms/step - loss: 1.1944 - accuracy: ©.4819 - val_loss: 2.2554 - val_accuracy: @.2556
Epoch 6/13

38/28 [] - 55 145ms/step - loss: 1.1783 - accuracy: @.4825 - val_loss: 2.2488 - val_accuracy: @.2856
Epoch 7/13

38/38 [] - 55 143ms/step - loss: 1.1523 - accuracy: 8.4986 - val_loss: 2.2214 - val_accuracy: 8.1637
Epoch 8/13

38/38 [] - 65 146ms/step - loss: 1.1511 - accuracy: ©.4879 - val_loss: 2.1995 - val_accuracy: @.2837
Epoch 9/13

38/38 [] - 65 148ms/step - loss: 1.1373 - accuracy: 08.4956 - val_loss: 2.1718 - val_accuracy: 8.3537
Epoch 18/13

38/28 [] - 55 14ims/step - loss: 1.1287 - accuracy: @.5825 - val_loss: 2.1365 - val_accuracy: @.3562
Epoch 11/13

38/38 [] - 55 143ms/step - loss: 1.1286 - accuracy: ©.5182 - val_loss: 2.8897 - val_accuracy: @.3531
Epoch 12/13

38/38 [] - 55 14ims/step - loss: 1.1871 - accuracy: ©.5842 - val loss: 2.8289 - val_accuracy: ©.3558
Epoch 13/13

38/28 [] - 65 147ms/step - loss: 1.1828 - accuracy: @.5824 - val_loss: 1.9463 - val_accuracy: @.3581

<keras.src.callbacks.History at @x7eed48beZedd>

Figure 5 - CNN Epochs

For this training, we used a split of 75/25 training and testing data for the CNN
to run through. Surprisingly, this reported a worse accuracy than when the data
used a 50/50 split and a 70/30 split. This could potentially be a sign of
overfitting, due to the oversimplified model and the large amount of training data
it was fed.

score = cnn.evaluate(X _test, y test)

print(”Loss:", score[8])
print(“Accuracy:", score[1])
58/58 [==============================] - 15 12ms/step - loss: 1.84563 - accuracy: 8.3581

Loss: 1.9452952613838566
Accuracy: B8.3581258811928922

Figure 6 - CNN Evaluation

This evaluation, from the same run as Figure 5, shows the validation accuracy
from Figure 5 as well as the validation loss, rather than the regular loss and
regular accuracy. This could be a sign of overfitting because the training
accuracy was around 20% higher than the validation accuracy, which used the
testing data.

Improving the Convolutional Neural Network

Due to the fact that the convolutional neural network was supposed to be our
best model, we were not satisfied with the fact that it was reporting only 50%
accuracy. In order to fix this, we rather easily traced the root of the problem to the
simple fact that the model was not complicated for the amount of data that we were
feeding it. The reason that the model performed poorly when more neurons were
added to its existing layers was because there were simply not enough layers, nor
enough epochs to properly run the data in order to return a satisfactory accuracy.
So, we added two more layers, and increased the amount of neurons in each layer.
At first, we attempted three convolutional layers: the first had 64 neurons, the
second 128, and the third 256. Each chunk of convolutional layers had its own batch
normalization layer and max pooling layer. The amount of epochs was also
increased to 100 so that the model would be properly trained and handled without
leaving anything out. When the model reported back with a 58% accuracy, we knew
that we were on the right track of improving the CNN in order to allow it to properly
work as it should.

After this test run, we added another convolutional, batch normalization, and
max pooling layer. The CNN now had four convolutional layers: 64 neurons in the
first, 128 in the second, 256 in the third, and 512 in the fourth. The amount of epochs
was increased to 150, and this model reported back with 72% accuracy- a significant
increase. From there, we kept the amount of neurons in the convolutional layers the
same, but once again increased the epochs by 50. With 200 epochs, the model
reported back with 77% accuracy. While this accuracy was extremely better than
what we originally began with, it was still not enough.

We then retraced the lack of accuracy to the fewer number of neurons in the
convolutional layers, and went back to the model to double each value. Now our
CNN once again had four convolutional layers, but the amount of neurons went as
follows: 128, 256, 512, 1028. After running this model, the accuracy given back was
91%- an astounding change from the 77% reported when the amount of neurons in
each layer was half of what they were now. From here, we wondered if we could get
the model to report a higher accuracy, so we once again increased the amount of
epochs by 50. With 250 epochs, the accuracy increased only slightly, now being 93%.

Epoch 2B3/389
° 38/38
Epoch
38/38
Epoch
3g/38
Epoch
38/38
Epoch
38/38
Epoch
38/38
Epoch
38/38
Epoch
38/38
Epoch 291/3
38/38
Epoch
38/38
Epoch
38/38
Epoch 294/3
32/38
Epoch
38/38
Epoch
38/38
Epoch
38/38
Epoch 29
38/38
Epoch
38/38
Epoch 380/388

38/38 [smessssssssssssssssssssssasess 1

- 28s

- 38s

- 3@s

= 385

3@és

Fobms/step -
5 787ms/step -
5 796ms/step
5 7oBms/step -
7a5ms/step -
5 786ms/step -
5 785ms/step
& 724ms/step -
TaAmsSstep -
5 795ms/step -
s 786ms/step
7ooms/step -
7o4ms/step -
787ms/step -
786ms/step -
5 786ms/step -
5 787ms/step -

7a4ms/step -

<keras.src.callbacks History at @x79f26c576588>

loss:
loss:
loss:
loss:
lass:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:

loss:

6.4827

@.4436 -

a.4683 -

8.4677 -

@.4814 -

B8.4725 -

8.4615 -

6.4783 -

- accuracy:
- accuracy:
accuracy:
- accuracy:
- accuracy:
- BCCuracy:
accuracy .
- accuracy:
- accuracy:
- AcCuracy:
accuracy:
accuracy:
accuracy:
accuracy:
accuracy:
accuracy:
accuracy:

accuracy:

e.82e2 -

0.8138 -

0.8265

8.8175 -

8.8221 -

8.8285 -

8.8202 -

8.8269 -

©9.8204

B.8388 -

8.8398 -

8.8375 -

8.8318 -

8.8377 -

8.8379 -

©.8288 -

val_loss:
val_loss:
val_loss:
val_loss:
val_loss:
val_loss:
val_loss:
- val_loss:
val loss:
val_loss:
val_loss: €
val_loss:
val_loss:
val_loss:
val loss:
val_less:
val_loss:

val_loss:

Figure 7 - CNN Improvement (300 epochs)

.2968 -

1.2547 -

. 2482

val_accuracy: @.9837
val_accuracy: 8.9331

val_accuracy: 8.9319

72 - val_accuracy: ©8.9394

-2229 -

L2429 -

. 2458

.2424 -

.226@8 -

.2313 -

.28a7

.2197 -

}.2253 -

.2364 -

@.2138

.2181 -

1. 2423 -

.2365 -

val_accuracy: 8.9444
val_accuracy: 8.9344
val_accuracy: @.935@
val_accuracy: 8.9408
Ua]_a{LLPaLy: @.9375
val_accuracy: ©.9419
val_accuracy: 8.9158
val_accuracy: @.9438
val_accuracy: ©.9444

val_accuracy: &.9356

- val_accuracy: ©.9458

val_accuracy: 8.9458
val_accuracy: ©.9344

val_accuracy: ©8.9356

Figure 7 shows us once again wondering if we could get any more accuracy
out of the model, so it was run with 300 epochs. The change in accuracy was less

than 1%, which meant that we had reached a true accuracy of 93%. This accuracy
was much better than the ~50% that the model had been reporting when it was first
run, but understandable once we considered the size of the first models compared
to the size of the dataset that it was attempting to analyze and train with.

Surprising Accuracy in VGG19 Convolutional Neural Network

After running our regular convolutional neural network model, we decided to
put our data into a VGG19 CNN model in order to see if the accuracy would increase
or stay the same. We did this by keeping the model that we already had, with the
only difference being that the manually added convolutional, batch normalization
and max pooling layers were deleted and replaced with the VGG19 model which
added 19 convolutional layers. We also decreased the amount of epochs by half,
because we were unsure of what the model would do. But decreasing the amount
of epochs quickly proved to be a mistake due to the sudden loss of accuracy, as the
model reverted back to 50% accuracy. This was a disappointment, as the VGG19
accuracy was supposed to thoroughly look through the data and report back with a
higher accuracy. After analyzing the model, and taking into account the complexity
of it, we hypothesized that the problem lied in the fact that there were not enough
epochs to properly process the data and report a correctly represented accuracy.
Due to lack of resources, we were not able to test this hypothesis, but we came up
with another possible hypothesis which was the idea of overfitting. Due to the fact
that the model performed incredibly well with only 4 convolutional layers, the idea
that the VGG19 model had gotten too used to the training data from the dataset
provided is a very feasible possibility and that is why it reported back with such poor
accuracy compared to its predecessor model.

7. Conclusion

A potential problem with this research could be presented in the fact that
there is not enough moderate Alzheimer's Disease being represented in the dataset.
There is no severe Alzheimer's Disease at all, which would weaken the model if it
were presented with an MRI scan displaying severe dementia in a patient. However,
this project aims to search for mild Alzheimer's in order to detect it early, which
means that it is a positive that a large portion of the data lies in very mild or mild
severity. The non-demented MRI scans act as a control group, and the large quantity
ensures that hopefully there are less false positives or false negatives that would
lead to incorrect diagnoses. There is also a possibility that the overwhelming amount

of non-demented MRI scans leads to a bias, which means that the data is more likely
to present a false negative or false positive.

We hope to have a GPU so we can properly run our VGG19 model with more
epochs in the future, because we are interested in whether this was the problem
that prevented it from performing as high as the other convolutional neural network
models that only had four convolutional layers. We hypothesize that 500 epochs
would significantly increase the accuracy, although it still may not be enough to
properly represent the data and we still may not get an accuracy that is satisfactory.
But all we truly need is for more epochs to show better accuracy, because this will
prove our hypothesis correct and then we can build off of those results.

The lack of a GPU made it so that we were not able to run the models without
the platform they were on crashing due to overload of RAM. In order to get a GPU,
we needed a subscription, which cost money that we unfortunately did not have. If
we were to get this money, and this GPU, then the models would have been able to
perform to their full potential, and could have been evaluated more fairly.

Overall, our logistic regression model performed the best at 97%, while our
VGG19 convolutional neural network (CNN) model performed the worst at ~50%.
Incidentally, these were our most shocking results as well, due to how unexpected
the inverse correlation of model complexity and accuracy was when comparing
these two models.

The CNN model initially performing poorly was also shocking to see, because
they did just as poorly as the VGG19 models when they were first being run. This
parallel strengthens the hypothesis that the complexity added to the model causes
the increase in accuracy, because once the regular CNN had been improved and
more epochs had been added, it quickly became our second best model with an
accuracy of 93%.

In the future, when we better our model, we want to see if we can use it to
find a correlation between the existence of Alzheimer's Disease (AD) in a patient and
the severity of an autoimmune disease the patient gets. We would most likely
compare a patient's MRI scans to COVID data, looking at the patient's lungs after
COVID and see how damaged they have become. Although this project would
require many more variables, because we would need not only classification based
on severity of Alzheimer's, but classification based on severity of COVID as well.
Currently, there is no publicly available dataset that has both COVID information and

AD information in the same patient, meaning that the potential to work with this type
of data cannot now be reached.

8. Acknowledgements

We would like to thank the Inspirit Al mentorship program for providing resources for
making this research possible. We would also like to specifically thank Ivan
Villa-Renteria for providing mentorship and advice so that this research could be
properly carried out and conducted in the form of machine learning.

9. References

Alzheimer's Facts & Statistics. Alzheimer's San Diego. (2022, September 21).
https.//www.alzsd.org/resources/facts-stats/

Everding, G. (2022, March 2). Damage early in alzheimer’s disease idd via novel MRI approach.
Washington University School of Medicine in St. Louis.

https.//medicine wustledu/news/damage-early-in-alzheimers-disease-idd-via-novel-mri-a
pproach/

Ji, X, Lian, Y., Dong, G, Ding, X., & Liu, X. (2023, August 15). Comparison of Brain MRI Findings
between Patients with Alzheimer's Disease and Non-Dementia Psychiatric Disorders in the
Elderly. Research Square. https://www.researchsquare.com/article/rs-3259508/v1

Kumar, S., & Shastri, S. (2021). Alzheimer MRI Preprocessed Dataset. Retrieved August 9,
2023..

Plater, R. (2022, June 25). How an MRI Brain Scan May Help Diagnose Alzheimer’s Disease.
Healthline.
https./www.healthline.com/health-news/how-an-mri-brain-scan-may-help-diagnose-alzh
eimers-disease

Boesch, G. (2023, March 16). VGG very deep convolutional networks (vggnet) - what you need
to know. viso.ai. https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/

Hardesty, L. (2017, April 14). Explained: Neural networks. MIT News | Massachusetts Institute of
Technology. https.//news.mitedu/2017/explained-neural-networks-deep-learning-0414

Having a lumbar puncture. Alzheimer's Society. (n.d.).
https./www.alzheimers.org.uk/research/take-part-research/lumbar-puncture

Keras Team. (n.d.). Keras documentation: Dense layer. Keras.
https://keras.io/api/layers/core_layers/dense/

Navlani, A. (2023, February 23). Python decision tree classification tutorial: Scikit-Learn
Decisiontreeclassifier. DataCamp.

https.//www.datacamp.com/tutorial/decision-tree-classification-python

The Pennsylvania State University. (n.d.). 12.1 - Logistic Regression. 12.1 - Logistic Regression |
STAT 462. https://online.stat.psu.edu/stat462/node/207/

Simonyan, K, & Zisserman, A. (2015, April 10). Very deep convolutional networks for
large-scale image recognition. arXiv.org. https://arxiv.org/abs/1409.1556v6

What are Convolutional Neural Networks?. IBM. (n.d.-a).
https./www.ibm.com/topics/convolutional-neural-networks

What are Neural Networks?. IBM. (n.d.-b). https.//www.ibm.com/topics/neural-networks
What is a Decision Tree?. IBM. (n.d.-c). https./www.ibm.com/topics/decision-trees

What is Alzheimer's Disease? Alzheimer's Disease and Dementia. (n.d.).
https./www.alz.org/alzheimers-dementia/what-is-alzheimers

What is Logistic Regression?. IBM. (n.d.-d). https:.//www.ibm.com/topics/logistic-regression
What is Overfitting?. IBM. (n.d.-e). https.//www.ibm.com/topics/overfitting

Yathish, V. (2022, August 4). Loss functions and their use in neural networks. Medium.
https.//towardsdatascience.com/loss-functions-and-their-use-in-neural-networks-a470e70
3fleg

Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer's disease in the United States
(2010-2050) estimated using the 2010 Census. Neurology. Available at
www.neurology.org/content/early/2013/02/06/WNL.0b013e31828726f5.abstract.
Published online before print, Feb. 6, 2013.

Hirtz D, Thurman DJ,Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R.How common
are the “‘common’ neurologic disorders? Neurology 2007,68:326-37.

World Alzheimer Report 2015 the Global Impact Of Dementia An Analysis Of Prevalence,
Incidence, Cost and Trends, p.7
http:/www.alz.co.uk/research/WorldAlzheimerReport2015.pdf, and World Alzheimer
Report 2015 the Global Impact Of Dementia An Analysis Of Prevalence, Incidence, Cost and
Trends Summary Sheet, p.1
http://www.alz.co.uk/research/\WorldAlzheimerReport2015-sheet.pdf

Alzheimer'sDisease International World Alzheimer Report 2010: The Global Economic Impact
of Dementia: Executive Summary,” Prof Anders Wimo, Karolinska Institutet, Stockholm,
Sweden Prof Martin Prince, Institute of Psychiatry, King's College London,UK. Published by
Alzheimer'sDisease International (ADI) 21 September 2010

Chng, Z. M. (2022, August 5). Using activation functions in neural networks.
MachinelLearningMastery.com.
https://machinelearningmastery.com/using-activation-functions-in-neural-networks/

http://www.neurology.org/content/early/2013/02/06/WNL.0b013e31828726f5.abstract
http://www.alz.co.uk/research/WorldAlzheimerReport2015.pdf

Sharma, S. (2022, November 20). Activation functions in neural networks. Medium.
https:/towardsdatascience.com/activation-functions-neural-networks-1cbdof8dg1d6

Panneerselvam, L. (2023, October 19). Activation functions and their derivatives - A Quick &
Complete Guide. Analytics Vidhya.
https./”/www.analyticsvidhya.com/blog/2021/04/activation-functions-and-their-derivatives-
a-quick-complete-guide/#h-nonlinear-activation-functions

Krishnamurthy, B. (2022, October 28). An introduction to the ReLU activation function. Built In.
https:/builtin.com/machine-learning/relu-activation-function

